American Chemical Society
Browse

Mass Fingerprinting of Complex Mixtures: Protein Inference from High-Resolution Peptide Masses and Predicted Retention Times

Posted on 2013-12-06 - 00:00
In typical shotgun experiments, the mass spectrometer records the masses of a large set of ionized analytes but fragments only a fraction of them. In the subsequent analyses, normally only the fragmented ions are used to compile a set of peptide identifications, while the unfragmented ones are disregarded. In this work, we show how the unfragmented ions, here denoted MS1-features, can be used to increase the confidence of the proteins identified in shotgun experiments. Specifically, we propose the usage of in silico mass tags, where the observed MS1-features are matched against de novo predicted masses and retention times for all peptides derived from a sequence database. We present a statistical model to assign protein-level probabilities based on the MS1-features and combine this data with the fragmentation spectra. Our approach was evaluated for two triplicate data sets from yeast and human, respectively, leading to up to 7% more protein identifications at a fixed protein-level false discovery rate of 1%. The additional protein identifications were validated both in the context of the mass spectrometry data and by examining their estimated transcript levels generated using RNA-Seq. The proposed method is reproducible, straightforward to apply, and can even be used to reanalyze and increase the yield of existing data sets.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?