American Chemical Society
Browse

ZnMe2‑Mediated, Direct Alkylation of Electron-Deficient N‑Heteroarenes with 1,1-Diborylalkanes: Scope and Mechanism

Posted on 2020-07-13 - 16:42
The regioselective, direct alkylation of electron-deficient N-heteroarenes is, in principle, a powerful and efficient way of accessing alkylated N-heteroarenes that are important core structures of many biologically active compounds and pharmaceutical agents. Herein, we report a ZnMe2-promoted, direct C2- or C4-selective primary and secondary alkylation of pyridines and quinolines using 1,1-diborylalkanes as alkylation sources. While substituted pyridines and quinolines exclusively afford C2-alkylated products, simple pyridine delivers C4-alkylated pyridine with excellent regioselectivity. The reaction scope is remarkably broad, and a range of C2- or C4-alkylated electron-deficient N-heteroarenes are obtained in good yields. Experimental and computational mechanistic studies imply that ZnMe2 serves not only as an activator of 1,1-diborylalkanes to generate (α-borylalkyl)­methylalkoxy zincate, which acts as a Lewis acid to bind to the nitrogen atom of the heterocycles and controls the regioselectivity, but also as an oxidant for rearomatizing the dihydro-N-heteroarene intermediates to release the product.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?