American Chemical Society
Browse

Why are Vibrational Lines Narrow in Proteins?

Posted on 2020-07-13 - 20:30
The vibrational Stark effect in proteins yields line shifts indicative of strong internal electric fields up to a few volts per angstrom. These values are supported by numerical simulations of proteins. The simulations also show a significant breadth of field fluctuations translating to inhomogeneous broadening of vibrational lines. According to fluctuation–dissipation arguments, strong internal fields should lead to broad lines. Experimentally reported vibrational lines in proteins are, however, very narrow. This disconnect is explained here in terms of the insufficient (nonergodic) sampling of the protein’s configurations on the lifetime of the vibrational probe. The slow component of the electric field fluctuations in proteins relaxes on the time scale of tens of nanoseconds and is dynamically frozen on the vibrational lifetime.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?