American Chemical Society
Browse

Vacancy Generation and Oxygen Uptake in Cu-Doped Pr-CeO2 Materials using Neutron and in Situ X‑ray Diffraction

Posted on 2016-12-02 - 18:48
The oxygen uptake ability of Pr-CeO2-based oxygen carriers, catalysts, and solid oxide fuel cells can be attributed to 3+ cation generation and the presence of vacant oxygen sites. Oxygen occupancies of CeO2, Pr-CeO2, and 5% Cu-doped Pr-CeO2 were investigated using neutron diffraction and related to the oxygen uptake as determined using thermogravimetric analysis (TGA). The presence of vacant tetrahedral oxygen sites at room temperature did not correspond to low-temperature oxygen uptake. The materials did not uptake oxygen at 420 °C, but oxygen uptake was observed at 600 °C, which indicated that a minimum temperature needs to be met to generate sufficient vacancies/3+ cations. Variations in the lattice parameter as a function of temperature were revealed using in situ X-ray diffraction (XRD). With increasing temperature the lattice parameter increased linearly due to thermal expansion and was followed by an exponential increase at ∼300–400 °C as cations were reduced. Despite segregation of Cu into CuO at high dopant concentration, at 600 °C a higher O2 uptake was obtained for Ce0.65Pr0.20Cu0.15O2−δ (120 μmol g–1), in comparison to Ce0.75Pr0.2Cu0.05O2−δ (92 μmol g–1), and was higher than that for Ce0.8Pr0.2O2−δ (55 μmol g–1). Both Pr and Cu introduce vacancies and promote the O2 uptake of CeO2.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?