American Chemical Society
Browse

Unraveling the Near-Unity Narrow-Band Green Emission in Zero-Dimensional Mn2+-Based Metal Halides: A Case Study of (C10H16N)2Zn1–xMnxBr4 Solid Solutions

Posted on 2020-07-13 - 22:50
Zero-dimensional (0D) Mn2+-based metal halides are potential candidates as narrow-band green emitters, and thus it is critical to provide a structural understanding of the photophysical process. Herein, we propose that a sufficiently long Mn–Mn distance in 0D metal halides enables all Mn2+ centers to emit spontaneously, thereby leading to near-unity photoluminescence quantum yield. Taking lead-free (C10H16N)2Zn1–xMnxBr4 (x = 0–1) solid solution as an example, the Zn/Mn alloying inhibits the concentration quenching that is caused by the energy transfer of Mn2+. (C10H16N)2MnBr4 exhibits highly thermal stable luminescence even up to 150 °C with a narrow-band green emission at 518 nm and a full width at half maximum of 46 nm. The fabricated white light-emitting diode device shows a high luminous efficacy of 120 lm/W and a wide color gamut of 104% National Television System Committee standard, suggesting its potential for liquid crystal displays backlighting. These results provide a guidance for designing new narrow-band green emitters in Mn2+-based metal halides.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?