American Chemical Society
Browse

Toward the Targeted Design of Molecular Ferroelectrics: Modifying Molecular Symmetries and Homochirality

Version 3 2019-04-26, 18:33
Version 2 2019-04-15, 18:45
Version 1 2019-04-15, 18:38
Posted on 2019-04-26 - 18:33
ConspectusAlthough the first ferroelectric discovered in 1920 is Rochelle salt, a typical molecular ferroelectric, the front-runners that have been extensively studied and widely used in diverse applications, such as memory elements, capacitors, sensors, and actuators, are inorganic ferroelectrics with excellent electrical, mechanical, and optical properties. With the increased concerns about the environment, energy, and cost, molecular ferroelectrics are becoming promising supplements for inorganic ferroelectrics. The unique advantages of high structural tunability and homochirality, which are unavailable in their inorganic counterparts, make molecular systems a good platform for manipulating ferroelectricity. Remarkably, based on the Neumann’s principle and the Curie symmetry principle defining the group-to-subgroup relationship, we have found some outstanding high-temperature molecular ferroelectrics, like diisopropylammonium bromide (DIPAB) with a large spontaneous polarization up to 23 μC/cm2 (Fu, D. W.; et al. Science 2013, 339, 425). However, their application potential is severely limited by the uniaxial nature, leading to major issues in finding proper substrates for thin-film growth and achieving high thin-film performance. Inspired by the commercialized inorganic ferroelectrics like Pb­(Zr, Ti)­O3 (PZT), where the multiaxial nature contributes greatly to the optimized ferroelectric and piezoelectric performance, developing high-temperature multiaxial molecular ferroelectrics is an imminent task.In this Account, we review our recent research progress on the targeted design of multiaxial molecular ferroelectrics. We first propose the “quasi-spherical theory”, a phenomenological theory based on the Curie symmetry principle, to modify the spherical cations to a low-symmetric quasi-spherical geometry for acquiring the highly symmetric paraelectric phase and the polar ferroelectric phase of multiaxial ferroelectrics simultaneously. Besides the sizes and weights of the cation and anion, the intermolecular interactions are particularly crucial for decelerating the molecular rotation at low temperature to reasonably induce ferroelectricity. It means that the momentums of the cation and anion should be matched, so we describe the “momentum matching theory”. In particular, introducing homochirality, a superiority of molecular materials over the inorganic ones, was demonstrated as an effective approach to increase the incidence of ferroelectric crystal structures.Thanks to the striking chemical variability and structure–property flexibility of molecular materials, our research efforts outlined in this Account have led to and will further motivate the richness and the application exploration of high-temperature, high-performance multiaxial molecular ferroelectrics, along with the implementation and perfection of the targeted design strategies.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?