American Chemical Society
Browse

Three-Dimensional Magnesiophilic Scaffolds for Reduced Passivation toward High-Rate Mg Metal Anodes in a Noncorrosive Electrolyte

Posted on 2020-06-12 - 14:39
Magnesium ion batteries are a promising alternative of the lithium counterpart; however, the poorly ion-conductive passivation layer on Mg metal makes plating/stripping difficult. In addition to the generally recognized chemical passivation, the interphase is dynamically degraded by electrochemical side reactions. Especially under high current densities, the interphase thickens, exacerbating the electrode degradation. Herein, we adopt 3D Mg3Bi2 scaffolds for Mg metal, of which the high surface area reduces the effective current density to avoid continuous electrolyte decomposition and the good Mg affinity homogenizes nucleation. The greatly alleviated passivation layer could serve as a stable solid/electrolyte interface instead. The symmetric cell delivers a low overpotential of 0.21 and 0.50 V at a current density of 0.1 and 4 mA cm–2, respectively, and a superior cycling performance over 300 cycles at 0.5 mA cm–2 in a noncorrosive conventional electrolyte. This work proves that the control of dynamic passivation can enable high-power density Mg metal anodes.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?