American Chemical Society
Browse

The Metal Ion Release of Manganese Ferrite Nanoparticles: Kinetics, Effects on Magnetic Resonance Relaxivities, and Toxicity

Posted on 2022-06-03 - 18:12
Mn2+ release is particularly important for biological application of manganese-based nanomaterials. However, the Mn2+ release profiles of the manganese ferrite nanoparticles are under clarification. Here, we synthesized 3, 10, and 18 nm manganese ferrite nanoparticles (MFNPs) as model systems to study the Mn2+ release behavior, size, and pH-dependent kinetics. The Mn2+ release kinetic study showed that the first-order kinetic model was suitable for 3 and 10 nm MFNPs, while the Higuchi model was suitable for 18 nm MFNPs in a neutral PBS buffer (pH 7.4). In an acidic PBS buffer (pH 4.8), the Mn2+ release from all sizes of MFNPs follows first-order kinetics, which is possible due to the reaction between MFNPs and H+. The influence of Mn2+ release was evaluated by comparing the variations of magnetic resonance (MR) relaxation and magnetic properties before and after Mn2+ release of MFNPs. The results showed that the saturation magnetization (Ms), longitudinal relaxivity (r1), and transverse relaxivity (r2) values declined due to Mn2+ release, while the ratio of r2/r1 increased slightly, showing that all sizes of MFNPs exhibited the same MR mode as the synthesized MFNPs. More importantly, the release kinetics were employed to estimate the toxicity of the released Mn2+ in vivo. The potential toxicity is acceptable for MFNP administration since the calculated amount of Mn2+ is in the range of safe doses.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?