The Build-Up of Polyelectrolyte Multilayers of Microfibrillated
Cellulose and Cationic Polyelectrolytes
Posted on 2008-02-05 - 00:00
A new type of nanocellulosic material has been prepared by high-pressure homogenization of carboxymethylated
cellulose fibers followed by ultrasonication and centrifugation. This material had a cylindrical cross-section as shown
by transmission electron microscopy with a diameter of 5−15 nm and a length of up to 1 μm. Calculations, using
the Poisson−Boltzmann equation, showed that the surface potential was between 200 and 250 mV, depending on the
pH, the salt concentration, and the size of the fibrils. They also showed that the carboxyl groups on the surface of
the nanofibrils are not fully dissociated until the pH has reached pH = ∼10 in deionized water. Calculations of the
interaction between the fibrils using the Derjaguin−Landau−Verwey−Overbeek theory and assuming a cylindrical
geometry indicated that there is a large electrostatic repulsion between these fibrils, provided the carboxyl groups are
dissociated. If the pH is too low and/or the salt concentration is too high, there will be a large attraction between the
fibrils, leading to a rapid aggregation of the fibrils. It is also possible to form polyelectrolyte multilayers (PEMs) by
combining different types of polyelectrolytes and microfibrillated cellulose (MFC). In this study, silicon oxide surfaces
were first treated with cationic polyelectrolytes before the surfaces were exposed to MFC. The build-up of the layers
was monitored with ellipsometry, and they show that it is possible to form very well-defined layers by combinations
of MFC and different types of polyelectrolytes and different ionic strengths of the solutions during the adsorption
of the polyelectrolyte. A polyelectrolyte with a three-dimensional structure leads to the build-up of thick layers of
MFC, whereas the use of a highly charged linear polyelectrolyte leads to the formation of thinner layers of MFC.
An increase in the salt concentration during the adsorption of the polyelectrolyte results in the formation of thicker
layers of MFC, indicating that the structure of the adsorbed polyelectrolyte has a large influence on the formation
of the MFC layer. The films of polyelectrolytes and MFC were so smooth and well-defined that they showed clearly
different interference colors, depending on the film thickness. A comparison between the thickness of the films, as
measured with ellipsometry, and the thickness estimated from their colors showed good agreement, assuming that
the films consisted mainly of solid cellulose with a refractive index of 1.53. Carboxymethylated MFC is thus a new
type of nanomaterial that can be combined with oppositely charged polyelectrolytes to form well-defined layers that
may be used to form, for example, new types of sensor materials.
CITE THIS COLLECTION
DataCiteDataCite
No result found
Wågberg, Lars; Decher, Gero; Norgren, Magnus; Lindström, Tom; Ankerfors, Mikael; Axnäs, Karl (2016). The Build-Up of Polyelectrolyte Multilayers of Microfibrillated
Cellulose and Cationic Polyelectrolytes. ACS Publications. Collection. https://doi.org/10.1021/la702481v