American Chemical Society
Browse

Tandem GGDEF–EAL Domain Proteins Pleiotropically Modulate c‑di-GMP Metabolism Enrolled in Bacterial Cellulose Biosynthesis

Posted on 2025-01-11 - 04:13
Cyclic diguanosine monophosphate (c-di-GMP) is a crucial secondary messenger that regulates bacterial cellulose (BC) synthesis. It is synthesized by diguanylate cyclase (DGC) containing a Gly-Gly-Asp/Glu-Glu-Phe (GGDEF) domain and degraded by phosphodiesterase (PDE) with a Glu-Ala-Leu (EAL) domain. In this work, a systematic analysis of ten GGDEF–EAL tandem domain proteins from Komagataeibacter xylinus CGMCC 2955 assessed their c-di-GMP metabolic functions and effects on BC titer and structure. Of these, five proteins exhibited DGC activity, and five exhibited PDE activity in vitro. GE03 was identified as a bifunctional protein. Most mutant strains deficient in GGDEF-EAL protein showed changes in BC metabolism, motility, and c-di-GMP levels. The combined knockout of identified PDE proteins increased the BC titer by 48.1% compared to the wild type. Overall, our findings advance our understanding of c-di-GMP signaling and its role in BC synthesis, introducing novel concepts and effective strategies for enhancing industrial BC production.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?