American Chemical Society
Browse

Tailorable Indirect to Direct Band-Gap Double Perovskites with Bright White-Light Emission: Decoding Chemical Structure Using Solid-State NMR

Posted on 2020-06-04 - 21:03
Efficient white-light-emitting single-material sources are ideal for sustainable lighting applications. Though layered hybrid lead–halide perovskite materials have demonstrated attractive broad-band white-light emission properties, they pose a serious long-term environmental and health risk as they contain lead (Pb2+) and are readily soluble in water. Recently, lead-free halide double perovskite (HDP) materials with a generic formula A­(I)2B′(III)­B″(I)­X6 (where A and B are cations and X is a halide ion) have demonstrated white-light emission with improved photoluminescence quantum yields (PLQYs). Here, we present a series of Bi3+/In3+ mixed-cationic Cs2Bi1–xInxAgCl6 HDP solid solutions that span the indirect to direct band-gap modification which exhibit tailorable optical properties. Density functional theory (DFT) calculations indicate an indirect–direct band-gap crossover composition when x > 0.50. These HDP materials emit over the entire visible light spectrum, centered at 600 ± 30 nm with full-width at half maxima of ca. 200 nm upon ultraviolet light excitation and a maximum PLQY of 34 ± 4% for Cs2Bi0.085In0.915AgCl6. Short-range structural insight for these materials is crucial to unravel the unique atomic-level structural properties which are difficult to distinguish by diffraction-based techniques. Hence, we demonstrate the advantage of using solid-state nuclear magnetic resonance (NMR) spectroscopy to deconvolute the local structural environments of these mixed-cationic HDPs. Using ultrahigh-field (21.14 T) NMR spectroscopy of quadrupolar nuclei (115In, 133Cs, and 209Bi), we show that there is a high degree of atomic-level B′(III)/B″(I) site ordering (i.e., no evidence of antisite defects). Furthermore, a combination of XRD, NMR, and DFT calculations was used to unravel the complete atomic-level random Bi3+/In3+ cationic mixing in Cs2Bi1–xInxAgCl6 HDPs. Briefly, this work provides an advance in understanding the photophysical properties that correlate long- to short-range structural elucidation of these newly developed solid-state white-light emitting HDP materials.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?