American Chemical Society
Browse

Synchronized Structure and Surface Tension Measurement on Individual Secondary Aerosol Particles by Low-Voltage Transmission Electron Microscopy

Posted on 2020-06-17 - 12:06
A number of physical and chemical models have been built to describe secondary aerosols (SAs) in the atmosphere; however, direct experimental approaches to simultaneously characterizing the chemical structures and physical properties on the single-particle level are lacking. This lack obscures our understanding of SA formation mechanisms and impedes the development on the accurate prediction and control of air pollution. Here we obtained clear core–shell structural information about the aqueous aerosols employing low-voltage transmission electron microscopy–energy dispersive spectroscopy. The prevalent 10–20% surface tension reduction due to organic matter partitioning has been unveiled. Further analysis and modeling show that smaller SAs can yield greater surface tension reduction, while the pronounced surface tension reduction may enlarge the size of SAs by ≤50%. Our work paves the way for an unprecedented comprehensive single-particle study of the global atmospheric SA problem.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?