American Chemical Society
Browse

Stability of Chemically Doped Nanotube–Silicon Heterojunction Solar Cells: Role of Oxides at the Carbon–Silicon Interface

Posted on 2019-08-06 - 12:34
Heterojunctions of carbon nanotubes interfaced with silicon and doped with AuCl3 can achieve attractive power conversion efficiencies when operated in the photovoltaic regime; however, the cost and long-term stability of such devices must be improved before they could become commercially viable. Here, we investigate the role of chemical treatment of the carbon nanotube/silicon interface with either SOCl2 or HNO3, prior to AuCl3 doping, on the stability of the photovoltaic devices. We find that while both treatments initially lead to similar device performance, devices treated with HNO3 are significantly more stable. Using X-ray photoemission spectroscopy, we demonstrate that pretreatment with the powerful organic oxidant SOCl2 generates a variety of low-oxidation-state silicon species at the nanotube–silicon interface that are not generated by exposure to HNO3. These species and their evolution over time are implicated in the reduced device stability, highlighting the importance of silicon oxidation states in determining the stability of carbon nanotube–silicon photovoltaic devices.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?