American Chemical Society
Browse

Single-Component Adsorption Equilibria of CO2, CH4, Water, and Acetone on Tapered Porous Carbon Molecular Sieves

Posted on 2024-02-22 - 18:40
Engineered carbon molecular sieves (CMSs) with tapered pores, high surface area, and high total pore volume were investigated for their CO2, CH4, water, and acetone adsorption properties at 288.15, 298.15, 308.15 K, and pressures of <1 bar. The results were compared with BPL carbon. The samples exhibited higher adsorption capacity for CO2 compared to BPL carbon, with Carboxen 1005 being the highest due to the presence of ultramicropores (pores smaller than 0.8 nm). Similar observations were made for CH4 except at 288.15 K. Although the CMSs exhibited higher hydrophobicity than BPL carbon, the latter had the highest acetone uptake for all investigated temperatures due to its higher oxygen content, which facilitates stronger interactions with polar VOC molecules. Heats of adsorption were calculated using the Clausius–Clapeyron equation after fitting the isotherms with the dual-site Langmuir–Freundlich model, and results largely corroborated the order of adsorption capacities of CO2, CH4, and water on the carbon materials.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?