American Chemical Society
Browse

Shock Wave Energy Dissipation in Catalyst-Free Poly(dimethylsiloxane) Vitrimers

Posted on 2020-06-15 - 04:46
Materials that absorb shock wave energy from blasts and high-speed impacts are critical for protection of structures, vehicles, and people. Incorporating dynamic bonds into polymers has enabled precise control over the time-dependent response and energy-dissipating modes, but this work has focused on much slower time scales and lower forces than those associated with shock waves. Here, we design polymers networks with dynamic covalent bonds, called vitrimers, where reversible exchange reactions provide a potential mechanism for shock wave energy dissipation. Increasing the density of dynamic bonds leads to a systematic increase in energy dissipation, measured by the drop in peak pressure of a laser-induced shock wave. An analogous permanent polymer network shows no dependence of dissipation on cross-link density. The vitrimers can absorb shock multiple times while maintaining performance, attributed to bond exchange and the intrinsic self-healing ability of the polymer. Our results are the first to demonstrate that vitrimers are an effective route to the design of energy-dissipating materials, particularly at the high frequencies and pressures associated with shock waves.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?