American Chemical Society
Browse

Self-Planarization of High-Performance Graphene Liquid Crystalline Fibers by Hydration

Posted on 2020-06-11 - 22:29
Graphene fibers (GFs) are promising elements for flexible conductors and energy storage devices, while translating the extraordinary properties of individual graphene sheets into the macroscopically assembled 1D structures. We report that a small amount of water addition to the graphene oxide (GO) N-methyl-2-pyrrolidone (NMP) dispersion has significant influences on the mesophase structures and physical properties of wet-spun GFs. Notably, 2 wt % of water successfully hydrates GO flakes in NMP dope to form a stable graphene oxide liquid crystal (GOLC) phase. Furthermore, 4 wt % of water addition causes spontaneous planarization of wet-spun GFs. Motivated from these interesting findings, we develop highly electroconductive and mechanically strong flat GFs by introducing highly crystalline electrochemically exfoliated graphene (EG) in the wet-spinning of NMP-based GOLC fibers. The resultant high-performance hybrid GFs can be sewn on cloth, taking advantage of the mechanical robustness and high flexibility.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?