American Chemical Society
Browse

Selective Hydrogenation of 5‑Hydroxymethylfurfural via Zeolite Encapsulation to Avoid Further Hydrodehydroxylation

Posted on 2020-06-17 - 19:08
Pt nanoparticles encapsulated into zeolite Y (denoted as Pt@Y) exhibited approaching 100% catalytic selectivity to 2,5-bis-(hydroxymethyl)-furan (BHMF) at full conversion of 5-hydroxymethylfurfural (HMF) in the presence of H2, coupled with good reusability. Zeolite Y constrained HMF to be adsorbed on encapsulated Pt nanoparticle surface via either the end of aldehyde groups or hydroxyl groups in thermodynamically unfavorable end-on mode to enlarge the gap in the activation energies between hydrogenation of aldehyde groups and hydrodehydroxylation of hydroxyl groups to favor selectivity enhancement via avoidance of further hydrodehydroxylation at moderate conditions, which provide a general method to avoid thermodynamics-regulated flat-lying conformation for simultaneous activation on the furan ring, aldehyde, and hydroxyl groups.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?