American Chemical Society
Browse

Rational Design and Synthesis of Porous Organic−Inorganic Hybrid Frameworks Constructed by 1,3,5-Benzenetriphosphonic Acid and Pyridine Synthons

Posted on 2006-02-06 - 00:00
1,3,5-Benzenetriphosphonic acid, H6BTP, 1,3,5-[(HO)2OP]3C6H3, was reacted hydrothermally with copper salts in the absence and presence of 4,4‘-bipyridine (bpy) and 4,4‘-trimethlyenedipyridine (tbpy) in a 1:1 molar ratio leading to three new organic−inorganic hybrid frameworks. Compound 1, {Cu6[C6H3(PO3)3]2(H2O)8}·5.5H2O, has three different copper ions that are interconnected by the highly charged [1,3,5-(PO3)3C6H3]6- anionic moieties. These moieties self-assemble through tetra-copper units to give a cagelike motif with two benzene rings parallel to each other at a distance of 3.531 Å which extend along the a axis and link with a grouping of four-coordinated copper units in the b axis direction to give the cross-linked layered structure. In compound 2, Cu{C6H3[PO(OH)O]2[PO(OH)2]}(C10H8N2), the copper ions are in square pyramidal geometries and are interconnected via chelating and bridging BTP ligands into layers which are further cross-linked by bpy ligands into a pillared layered architecture. Compound 3, {Cu2C6H3[PO(OH)O]2[PO3](C13H14N2)}·3H2O·0.5HCON(CH3)2, contains tetra-copper units that are linked by BTP ligands and further linked by tbpy linkers in the c axis direction to produce a large channel-sized 3D framework.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?