American Chemical Society
Browse

Programmable Macroscopic Self-Assembly of DNA-Decorated Hydrogels

Posted on 2022-01-28 - 14:42
The precise and predictable formation of double-helical structures from complementary DNA sequences has made DNA an extremely versatile tool for programming self-assembled structures from the nanometer to micrometer scale. While a number of supramolecular interactions have been shown to drive self-assembly of macroscopic building blocks of the millimeter scale, DNA-driven self-assembly of macroscopic objects has not been well-established. In this work, we developed a postpolymerization coupling strategy to conjugate short DNA sequences to polyacrylamide-based hydrogel blocks. We observed sequence-specific self-assembly of DNA-decorated hydrogels with 1–2 mm edges in aqueous solution. Furthermore, selective disassembly of hydrogels upon addition of a DNA strand was demonstrated by exploiting a strand displacement reaction. These results lay the foundation for adaptation of various DNA functions to macroscopic self-assembly, for example, molecular recognition, molecular computation, and chemical catalysis.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?