American Chemical Society
Browse

Polarization and Charge-Separation of Moiré Excitons in van der Waals Heterostructures

Posted on 2024-11-11 - 23:43
Twisted transition metal dichalcogenide (TMD) bilayers exhibit periodic moiré potentials, which can trap excitons at certain high-symmetry sites. At small twist angles, TMD lattices undergo an atomic reconstruction, altering the moiré potential landscape via the formation of large domains, potentially separating the charges in-plane and leading to the formation of intralayer charge-transfer (CT) excitons. Here, we employ a microscopic, material-specific theory to investigate the intralayer charge-separation in atomically reconstructed MoSe2–WSe2 heterostructures. We identify three distinct and twist-angle-dependent exciton regimes including localized Wannier-like excitons, polarized excitons, and intralayer CT excitons. We calculate the moiré site hopping for these excitons and predict a fundamentally different twist-angle-dependence compared to regular Wannier excitons - presenting an experimentally accessible key signature for the emergence of intralayer CT excitons. Furthermore, we show that the charge separation and its impact on the hopping can be efficiently tuned via dielectric engineering.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?