Particle Zips: Vertical Emulsion Films with Particle
Monolayers at Their Surfaces
Posted on 2005-03-15 - 00:00
Vertical emulsion films with particle monolayers at their surfaces have been studied by direct microscope
observations. The effects of particle wettability and surface coverage on the structure and stability of water
films in octane and octane films in water have been investigated. Monodisperse silica particles (3 μm in
diameter) hydrophobized to different extents have been used. It is found that the structure and stability
of emulsion films strongly depend on the film type (water-in-oil or oil-in-water), the particle contact angle,
the interactions between particles from the same and the opposite monolayer, and the monolayer density.
Stable films are observed only when the particle wettability fulfills the condition for stable particle bridgesin agreement with the concept that hydrophilic particles can give stable oil-in-water emulsions, whereas
hydrophobic ones give water-in-oil emulsions. In the case of water films with dilute disordered monolayers
at their surfaces, the hydrophilic particles are expelled from the film center toward its periphery, giving
a dimple surrounded by a ring of particles bridging the film surfaces. In contrast, the thinning of octane
films with dilute ordered monolayers at their surfaces finally leads to the spontaneous formation of a dense
crystalline monolayer of hydrophobic particles bridging both surfaces at the center of the film. The behaviors
of water and octane films with dense close-packed particle monolayers at their surfaces are very similar.
In both cases, a transition from bilayer to bridging monolayer is observed at rather low capillary pressures.
The implications of the above finding for particle stabilized emulsions are discussed.
CITE THIS COLLECTION
DataCiteDataCite
No result found
Horozov, Tommy S.; Aveyard, Robert; Clint, John H.; Neumann, Bernd (2016). Particle Zips: Vertical Emulsion Films with Particle
Monolayers at Their Surfaces. ACS Publications. Collection. https://doi.org/10.1021/la047993p