American Chemical Society
Browse

Oxygen Redox Reaction in Ionic Liquid and Ionic Liquid-like Based Electrolytes: A Scanning Electrochemical Microscopy Study

Version 3 2019-06-05, 14:06
Version 2 2019-06-04, 15:47
Version 1 2019-06-04, 15:45
Posted on 2019-06-05 - 14:06
Improving the stability of the cathode interface is one of the critical issues for the development of high-performance Li/O2 batteries. The most critical feature to address is the development of electrolytes that mitigate side reactions that bring about cathode passivation. It is well-known that the superoxide anion (O2•–) plays a critical role. Here, we propose scanning electrochemical microscopy (SECM) as an analytical tool to screen the electrolyte of Li/O2 batteries. We demonstrate that by using SECM it is possible to evaluate the stability of O2•– and of the cathode to the passivation process occurring during the oxygen redox reaction. Specifically, we report a study carried out at a glassy carbon electrode in 1-butyl-1-methylpyrrolidinium bis­(trifluoromethanesulfonyl)­imide (PYR14TFSI) and lithium bis­(trifluoromethanesulfonyl)­imide (LiTFSI) and in tetraethylene glycol dimethyl ether with LiTFSI, the latter ranging from the salt-in-solvent to solvent-in-salt regions.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?