American Chemical Society
Browse

Optically Decoupling Electrochromic Dynamics and In Situ Morphological Evolution of a Single Soft Polyaniline Nanoentity

Posted on 2025-01-11 - 03:29
Electroresponsive multicolored materials have tremendous potential in flexible electronics and smart wearable devices. Herein, the electrochromic dynamics and in situ morphological evolution of a single soft polyaniline nanoentity can be visualized and decoupled by an opto-electrochemical imaging strategy. The durability, tinting speed, and reversibility down to the single-nanoparticle level are quantified, and the switching of transient intermediate electrochromic states is trapped. The mechanistic studies suggest that the heterogeneity of electrochromic activity is attributed to the nonuniformity of the polymer network interspersed at the nanometric level. Furthermore, the representative Pauli repulsion effect is uncovered from the self-stretching behavior of the conductive state of polyaniline at the oxidized potential. It provides novel insights for advancing high-performance electrochromic devices and flexible strain sensors, which can be dynamically manipulated by external stimuli.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?