American Chemical Society
Browse

Nonlinear Magnetic Sensing with Hybrid Nitrogen-Vacancy/Magnon Systems

Posted on 2024-11-30 - 04:13
Magnetic sensing beyond the linear regime could broaden the frequency range of detectable magnetic fields, which is crucial to various microwave and quantum applications. Recently, nonlinear interactions in diamond nitrogen-vacancy (NV) centers are proposed to realize magnetic sensing across arbitrary frequencies. In this work, we enhanced these capabilities by exploiting the nonlinear spin dynamics in hybrid systems of NV centers and ferri- or ferromagnetic (FM) thin films. We studied the frequency mixing effect in the hybrid systems and demonstrated that the introduction of FM films not only amplifies the intensity of nonlinear resonance signals that are intrinsic to NV spins but also enables novel frequency mixing through parametric pumping and nonlinear magnon scattering effects. The discovery and understanding of the magnetic nonlinearities in hybrid NV/magnon systems position them as a prime candidate for magnetic sensing with a broad frequency range and high tunability, particularly meaningful for nanoscale, dynamical, and noninvasive materials characterization.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?