American Chemical Society
Browse

Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies

Posted on 2015-01-21 - 00:00
The nanoscaling of metamaterial structures represents a technological challenge toward their application in the optical frequency range. In this work we demonstrate tailored chiro-optical effects in plasmonic nanohelices, by a fabrication process providing a nanometer scale control on geometrical features, that leads to a fine tuning of operation band even in the visible range. Helicoidal 3D nanostructures have been prototyped by a bottom-up approach based on focused ion and electron beam induced deposition, investigating resolution limits, growth control and 3D proximity effects as a function of the interactions between writing beam and deposition environment. The fabricated arrays show chiro-optical properties at the optical frequencies and extremely high operation bandwidth tailoring dependent on the dimensional features of these 3D nanostructures: with the focused ion beam we obtained a broadband polarization selection of about 600 nm and maximum dissymmetry factor up to 40% in the near-infrared region, while with the reduced dimensions obtained by the focused electron beam a highly selective dichroic band shifted toward shorter wavelengths is obtained, with a maximum dissymmetry factor up to 26% in the visible range. A detailed finite difference time domain model highlighted the role of geometrical and compositional parameters on the optical response of fabricated nanohelices, in good agreement with experimental results.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?