American Chemical Society
Browse

NMR Spectral Editing, Water Suppression, and Dipolar Decoupling in Low-Field NMR Spectroscopy Using Optimal Control Pulses and Multiple-Pulse Sequence

Posted on 2025-01-22 - 13:25
Spectral dispersion in low-field nuclear magnetic resonance (NMR) can significantly affect NMR spectral analysis, particularly when studying complex mixtures like metabolic profiling of biological samples. To address signal superposition in these spectra, we employed spectral editing with selective excitation pulses, proving it to be a suitable approach. Optimal control pulses were implemented in low-field NMR and demonstrated their capability to selectively excite and eliminate specific amino acids, such as phenylalanine and taurine, either individually or simultaneously. The broadening of NMR signals in viscous samples, like bio samples, due to homonuclear dipolar coupling often leads to loss of spectral details, impacting spectral assignments. Therefore, in this work, the multiple-pulse WAHUHA sequence at both high and low field NMR was employed resulting in approximately 63 and 25% reduction in line widths respectively, evident from line width changes in the NMR spectra. The effectiveness of this process was validated by comparing its performance with that of magic angle spinning NMR. Additionally, water suppression was achieved through selective excitation by adding a term representing the water signal to the overall Hamiltonian, expressing the water signal peak frequency, and covering adjacent frequencies on both sides of the water peak within the water signal.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?