American Chemical Society
Browse

Multifunctional Vitrimer-Like Polydimethylsiloxane (PDMS): Recyclable, Self-Healable, and Water-Driven Malleable Covalent Networks Based on Dynamic Imine Bond

Posted on 2019-01-10 - 21:14
Vitrimer is a new class of polymeric materials which can be reprocessed to any shape while being permanently cross-linked. We designed and synthesized a catalyst-free network with poly­(dimethylsiloxane)­etherimide (PDMS-NH2), terephthalaldehyde (TA), and tri­(2-aminoethyl)­amine (TREA) through the condensation reaction between amino groups and aldehyde groups. As a result of the exchange reaction of the dynamic imine bond obtained, this PDMS network exhibits the nature of vitrimer-like material, which is examined by solubility and stress-relaxation experiments, and the relaxation time is as short as 64 s at 130 °C. In addition, the vitrimer-like PDMS is malleable and capable of self-healing, and the mechanical properties can be maintained even after three consecutive breaking/mold pressing cycles. Especially, besides heating, this vitrimer-like PDMS can also be recycled and reshaped at ambient temperature due to the exchange reaction of dynamic imine bond when immersed in water, which will potentially lead to green processing of the elastomers.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?