American Chemical Society
Browse

Monolayer Penta-BeAs2: A Promising 2D Materials for Toxic Gas Sensor with High Selectivity

Posted on 2024-10-04 - 07:03
The discovery of novel materials with high gas sensing selectivity is a key driver of gas sensor technology. Based on the recently reported two-dimensional (2D) pentagonal BeP2, we introduce penta-BeAs2 as a new member of the pentagonal family of materials for toxic gas sensors based on density functional theory (DFT). For electronic applications, a band structure calculation showed that penta-BeAs2 has indirect band gaps of 0.38 and 0.79 eV, using GGA–PBE or HSE functionals. Stability analysis confirmed that penta-BeAs2 is dynamically, mechanically, and thermally stable. The adsorption of toxic gases (CO, NO, and NO2) and nontoxic gases (H2, N2, H2O, and CO2) on the penta-BeAs2 monolayer was studied. The contrasting adsorption behavior observed between toxic and nontoxic gases on penta-BeAs2 (physisorption vs chemisorption) underscores its high selectivity for toxic gas-sensing applications. Adsorption energies for toxic gases fall within a moderate range (0.4–0.8 eV), indicating good reversibility and short recovery times at room temperature. Additionally, the quantum transport properties of penta-BeAs2 were studied using the nonequilibrium Green’s function (NEGF) approach, confirming strong sensitivity and selectivity toward toxic gases.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?