American Chemical Society
Browse

Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries

Posted on 2020-03-05 - 20:39
In the pursuit for future mobility, solid-state batteries open a wide field of promising battery concepts with a variety of advantages, ranging from energy density to power capability. However, trade-offs need to be addressed, especially for large-scale, cost-effective processing, which implies the use of a polymeric binder in the composite electrodes. Here, we investigate three-dimensional microstructure models of the active material, solid electrolyte, and binder to link cathode design and binder content with electrode performance. Focusing on lithium-ion transport, we evaluate the effective ionic conductivity and tortuosity in a flux-based simulation. Therein, we address the influence of electrode composition and active material particle size as well as the process-controlled design parameters of the void space and binder content. Even though added in small amounts, the latter has a strong negative influence on the ion transport paths and the active surface area. The simulation of ion transport within four-phase composites is supplemented by an estimation of the limiting current densities, illustrating that application-driven cell design starts at the microstructure level.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?