American Chemical Society
Browse

MOF-303 with Lowered Water Evaporation Enthalpy for Solar Steam Generation

Posted on 2024-09-06 - 20:03
Hydrophilic metal–organic frameworks (MOFs) are promising for solar steam generation from waste or seawater. In this study, we propose a MOF-based Janus membrane for efficient solar steam generation. We selected MOF-303 for its hydrophilic properties and 1D channels with 6.5 Å cavity diameter, making it an excellent water-absorbing layer. Characterization via Raman spectroscopy and differential scanning calorimetry indicates that the nanoconfinement within MOF-303 can reduce the water evaporation enthalpy, thereby boosting water production efficiency. When deposited on various substrates, MOF-303 aimed to optimize solar steam generation. We enhanced the membrane performance by incorporating carbon black (CB), polydopamine (PDA), and perfluoro-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-F), materials known for their solar-to-thermal energy conversion capabilities. PEDOT-F, in particular, also served as a hydrophobic layer, preventing salt recrystallization during seawater operation. Under one sun irradiation, the water evaporation flux for deionized water increased from 0.31 to 0.79 kg h–1 m–2 using a porous hydrophilic poly(vinylidene difluoride) substrate and further to 2.36 kg h–1 m–2 with the optimized MOF-303-CB/PDA-PEDOT-F membrane, achieving an energy conversion efficiency of 97%. Additionally, the desalination capability of the MOF-303 membrane effectively reduced metal ion concentrations (Na+, K+, Mg2+, and Ca2+) to meet the WHO drinking water standards. These findings demonstrate the significant potential of the MOF-303-based Janus membrane for practical applications in solar steam generation and desalination, combining high water evaporation rates with excellent energy conversion efficiency.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?