American Chemical Society

Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE

Posted on 2021-11-04 - 17:04
We demonstrate that fast and accurate linear force fields can be built for molecules using the atomic cluster expansion (ACE) framework. The ACE models parametrize the potential energy surface in terms of body-ordered symmetric polynomials making the functional form reminiscent of traditional molecular mechanics force fields. We show that the four- or five-body ACE force fields improve on the accuracy of the empirical force fields by up to a factor of 10, reaching the accuracy typical of recently proposed machine-learning-based approaches. We not only show state of the art accuracy and speed on the widely used MD17 and ISO17 benchmark data sets, but we also go beyond RMSE by comparing a number of ML and empirical force fields to ACE on more important tasks such as normal-mode prediction, high-temperature molecular dynamics, dihedral torsional profile prediction, and even bond breaking. We also demonstrate the smoothness, transferability, and extrapolation capabilities of ACE on a new challenging benchmark data set comprised of a potential energy surface of a flexible druglike molecule.


3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
AAPG Bulletin
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
Select your citation style and then place your mouse over the citation text to select it.


need help?