American Chemical Society
Browse

Kinetic Features of the Platinum Catalyzed Hydrolysis of Sodium Borohydride from 11B NMR Measurements

Posted on 2007-12-20 - 00:00
A full kinetic analysis of the platinum catalyzed hydrolysis of sodium borohydride (NaBH4) in alkaline media has been performed using 11B NMR (nuclear magnetic resonance) spectroscopy with a Pt/C 5 wt % commercial powder as catalyst. By fitting the NMR data by least-square regression techniques, the rate constants of platinum catalyzed borohydride hydrolysis have been evaluated. Within the investigated [borohydride]/[catalyst] molar ratio of 200−1500, the rate law has been found to be of first-order in catalyst and zero order in borohydride. Whereas no reagent-isotope kinetic effect is observed in the NaBD4/H2O reaction system, the hydrolysis of NaBH4 in deuterated water shows a significant solvent-kinetic isotope effect. In both cases, however, 11B NMR analysis indicates that the main reaction product is the tetrahydroxyborate species (D)nH4-nBO4- (n = 1, 2, 3, 4) followed by a minor amount of the partially scrambled BH3D- species while the hydrolysis-intermediates HnB(OD)4-n- (n = 1, 2, 3) species are not detectable during all the reaction time. These results suggest that, differently from the Pd catalyzed/borohydride(borodeuteride) hydrolytic process, the hydrogen/deuterium exchange is slower than hydrolysis and that the rate-determining step of the overall process is the formation of the monohydroxy-borohydride intermediate BH3OH-. The activation energy of the overall process has been also evaluated by 11B NMR rate measurements taken at different temperatures.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?