American Chemical Society
Browse

Influence of Impeller Geometry on Hydromechanical Stress in Stirred Liquid/Liquid Dispersions

Version 2 2019-02-12, 16:24
Version 1 2019-01-02, 19:08
Posted on 2019-02-12 - 16:24
Hydromechanical stress is a crucial parameter for a broad range of multiphase processes in the field of (bio)­chemical engineering. The effect of impeller type and geometry on hydromechanical stress in stirred tanks is important. The present study aims at characterizing conventional and new impeller types in terms of particle stress. A two-phase liquid/liquid noncoalescing dispersion system is employed, and the drop breakage is monitored in-line in a stirred tank. The published effects of agitation on drop deformation are confirmed and expanded significantly for five modified new impeller types. Radial impellers are advantageous for applications where low shear conditions are desired. A modified propeller with a peripheral ring and the developed wave-ribbon impellers present remarkable results by producing significantly low and high hydromechanical stress, respectively. The results obtained are correlated in terms of mean and maximum energy dissipation rate, as well as circulation frequency in the impeller swept volume.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?