American Chemical Society
Browse

Identifying the Origin of the Limiting Process in a Double Perovskite PrBa0.5Sr0.5Co1.5Fe0.5O5+δ Thin-Film Electrode for Solid Oxide Fuel Cells

Posted on 2019-07-01 - 18:33
Oxygen reduction reaction in a double perovskite material, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF), was studied for application as a cathode in a solid oxide fuel cell (SOFC). Electrochemical measurements were performed on a geometrically well-defined dense thin-film (0.8–2 μm thickness) electrode, fabricated as a symmetric cell. In combination with density functional theory (DFT) and molecular dynamics (MD) simulations, experiments provided an insight into the operating mechanism of the SOFC material tested at an open-circuit voltage. The dense thin-film electrode of PBSCF showed a thickness-dependent electrochemical performance, suggesting bulk diffusion limitation. To understand the origin of this diffusion-limiting electrochemical performance, DFT calculations were utilized to calculate the surface (γ) and oxygen vacancy formation (EOV) energies. For example, EOV in the Pr plane (190 kJ/mol) of PBSCF was measured to be lower than that of the BaSr plane (EOV = 297 kJ/mol). In addition, oxygen vacancies were difficult to be created in the BaSr/CoFe terminal surface (EOV = 341.6 kJ/mol) as compared to other terminal surfaces. MD simulations further elaborated on the nature of cation disordering in the surface and subsurface regions, consequently leading to the preferential segregation of the Ba cations to the surface, which is a known phenomenon in such double perovskite materials. Because of cation disordering and segregation of Ba species, the oxygen anion diffusivity (∼10–12 cm2 s–1), calculated from MD, in the near-surface region was observed to be 2 orders of magnitude lesser than that of the bulk (D = 2.98 × 10–10 cm2 s–1) of the material at 973 K. Surface characterization of the thin-film electrode using X-ray photoelectron spectroscopy was indicative of a nonperovskite Ba2+ phase on the electrode surface. The segregation of Ba cations was linked with the transport of oxygen anions, which was limiting the electrochemical performance of the electrode.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?