American Chemical Society
Browse

Highly Robust and Self-Powered Electronic Skin Based on Tough Conductive Self-Healing Elastomer

Posted on 2020-07-15 - 12:43
Self-powered electronic skin (E-skin) can be endowed with high robustness by employing self-healing materials. However, most self-powered E-skin employs two heterogeneous materials with high modulus mismatch at the interface and poor fully self-healing ability, which reduces the robustness of the whole device. Here, a conductive polyurethane elastomer (PUE) with excellent mechanical toughness and self-healing ability is prepared. Based on the self-healing insulated/conductive PUE homogeneous structure and triboelectric–electrostatic induction effect, a highly robust and self-powered E-skin (HRSE-skin) is developed. The HRSE-skin possesses stable mechanosensation capability during the 50% stretching deformation due to a low modulus mismatch in the homogeneous structure. In addition, the stretchability and mechanosensation capability of the HRSE-skin can be restored after the fracture owing to the fully self-healing ability of the homogeneous structure. Therefore, the HRSE-skin has high robustness of the whole device including stable service behaviors and excellent restorability. The developed HRSE-skin demonstrates high robustness in the detection of the force and bending angle of the prosthetic joint. This work solves the low robustness of self-powered E-skin by the preparation of conductive self-healing PUE and the construction of the homogeneous structure, which is important for the practical applications of self-powered E-skin in prosthetic limbs and advanced robotics.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?