American Chemical Society
Browse

Highly Breathable and Protective Carbon Fabrics

Posted on 2025-04-02 - 14:03
Achieving high water vapor transport while maintaining selective barrier properties in a single material is a crucial property desired in various fields. Breathable protective fabrics is one such area. This study specifically investigates the water vapor transport characteristics and barrier performance of carbon molecular sieve (CMS) membranes for potential applications in breathable protective fabrics. CMS membranes were fabricated by pyrolyzing precursor membranes with a focus on exploring the impact of different pyrolysis temperatures, membrane structures, and polymer concentrations on the properties of such membranes. A series of symmetric and asymmetric Matrimid CMS membranes were synthesized and tested. Samples pyrolyzed at 550 °C with 10% polymer concentration exhibited remarkable water vapor transport capability, outperforming commercial breathable fabrics by a factor of 2.6 despite having 3 orders of magnitude smaller pores. Owing to these small pores, they provide 7.5 times higher protective capacity compared to commercial breathable fabrics, which is comparable to that of the standard vapor impermeable protective materialbutyl rubber.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?