American Chemical Society
Browse

High-Responsivity Multiband and Polarization-Sensitive Photodetector Based on the TiS3/MoS2 Heterojunction

Posted on 2022-10-21 - 11:04
Two-dimensional (2D) material photodetectors have received considerable attention in optoelectronics as a result of their extraordinary properties, such as passivated surfaces, strong light–matter interactions, and broad spectral responses. However, single 2D material photodetectors still suffer from low responsivity, large dark current, and long response time as a result of their atomic-level thickness, large binding energy, and susceptibility to defects. Here, a transition metal trichalcogenide TiS3 with excellent photoelectric characteristics, including a direct bandgap (1.1 eV), high mobility, high air stability, and anisotropy, is selected to construct a type-II heterojunction with few-layer MoS2, aiming to improve the performance of 2D photodetectors. An ultrahigh photoresponsivity of the TiS3/MoS2 heterojunction of 48 666 A/W at 365 nm, 20 000 A/W at 625 nm, and 251 A/W at 850 nm is achieved under light-emitting diode illumination. The response time and dark current are 2 and 3 orders of magnitude lower than those of the current TiS3 photodetector with the highest photoresponsivity (2500 A/W), respectively. Furthermore, polarized four-wave mixing spectroscopy and polarized photocurrent measurements verify its polarization-sensitive characteristics. This work confirms the excellent potential of TiS3/MoS2 heterojunctions for air-stable, high-performance, polarization-sensitive, and multiband photodetectors, and the excellent type-II TiS3/MoS2 heterojunction system may accelerate the design and fabrication of other 2D functional devices.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?