American Chemical Society
Browse

Food Product Design: A Hybrid Machine Learning and Mechanistic Modeling Approach

Version 2 2019-08-23, 14:48
Version 1 2019-08-23, 13:36
Posted on 2019-08-23 - 14:48
At present, food products are designed by trial and error and the sensorial ratings are determined by a tasting panel. To expedite the development of new food products, a hybrid machine learning and mechanistic modeling approach is proposed. Sensorial ratings are predicted using a machine learning model trained with historical data for the food under consideration. The approach starts by identifying a set of food ingredient candidates and the key operating conditions in food processing based on heuristics, databases, etc. Food characteristics such as color, crispness, and flavors are related to these ingredients and processing conditions (which are design variables) using mechanistic models. The desired food characteristics are optimized by varying the design variables to obtain the highest sensorial ratings. To solve this gray-box optimization problem, a genetic algorithm is utilized where the design constraints (representing the desired food characteristics) are handled as penalty functions. A chocolate chip cookie example is provided to illustrate the applicability of the hybrid modeling framework and solution strategy.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?