American Chemical Society
Browse

Evaluating Organic Aerosol Sources and Evolution with a Combined Molecular Composition and Volatility Framework Using the Filter Inlet for Gases and Aerosols (FIGAERO)

Posted on 2020-07-10 - 15:05
ConspectusThe complex array of sources and transformations of organic carbonaceous material that comprises an important fraction of atmospheric fine particle mass, known as organic aerosol, has presented a long running challenge for accurate predictions of its abundance, distribution, and sensitivity to anthropogenic activities. Uncertainties about changes in atmospheric aerosol particle sources and abundance over time translate to uncertainties in their impact on Earth’s climate and their response to changes in air quality policy. One limitation in our understanding of organic aerosol has been a lack of comprehensive measurements of its molecular composition and volatility, which can elucidate sources and processes affecting its abundance. Herein we describe advances in the development and application of the Filter Inlet for Gases and Aerosols (FIGAERO) coupled to field-deployable High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS). The FIGAERO HRToFCIMS combination broadly probes gas and particulate OA molecular composition by using programmed thermal desorption of particles collected on a Teflon filter with subsequent detection and speciation of desorbed vapors using inherently quantitative selected-ion chemical ionization. The thermal desorption provides a means to obtain quantitative insights into the volatility of particle components and thus the physicochemical nature of the organic material that will govern its evolution in the atmosphere.In this Account, we discuss the design and operation of the FIGAERO, when coupled to the HRToF-CIMS, for quantitative characterization of the molecular-level composition and effective volatility of organic aerosol in the laboratory and field. We provide example insights gleaned from its deployment, which improve our understanding of organic aerosol sources and evolution. Specifically, we connect thermal desorption profiles to the effective equilibrium saturation vapor concentration and enthalpy of vaporization of detected components. We also show how application of the FIGAERO HRToF-CIMS to environmental simulation chamber experiments and the field provide new insights and constraints on the chemical mechanisms governing secondary organic aerosol formation and dynamic evolution. We discuss the associated challenges of thermal decomposition during desorption and calibration of both the volatility axis and signal. We also illustrate how the FIGAERO HRToF-CIMS can provide additional insights into organic aerosol through isothermal evaporation experiments as well as for detection of ultrafine particulate composition. We conclude with a description of future opportunities and needs for its ability to further organic aerosol science.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?