American Chemical Society
Browse

Engineering CO2‑Ultraselective Membranes: Molecularly Tailored Low-Crystallinity Polyvinylamine-PEGDGE Networks

Posted on 2024-12-24 - 20:13
Facilitated transport membranes (FTMs) with an ultraselective layer prepared from amine-rich polyvinylamine (PVAm)/2-(1-piperazinyl)ethylamine salt of sarcosine (PZEA-Sar) (denoted by PM) and an amorphous dendritic cross-linked network of PVAm-functionalized poly(ethylene glycol)diglycidyl ether (PEGDGE) (named PP) were designed for CO2 separations. The developed membranes expedited CO2 transport over N2 through the synergistic effect from the induced CO2-philic ethylene oxide groups and highly hydrophilic and polar hydroxyl groups together with the low-crystallinity PP networks, which offer a high diffusion rate for CO2-amine complexes through the membrane and stabilize small molecular mobile carriers via hydrogen bonding. The best (PM/PP-10)/polysulfone (PSf) composite membranes achieved a superior CO2/N2 selectivity of 230 (4.6 times higher compared to that of the pristine PVAm/PSf membranes) paired with a CO2 permeance of 100 GPU, exceeding the 2019 Robeson upper bound. Molecular dynamics (MD) simulations for the PVAm and PVAm/PP-10 membranes suggested that the PVAm matrix was swelled by the introduced PP-10 network with increased fractional free volume (FFV). The engineering of the molecular structure and the manipulation of FFV strongly push the limits of selectivity for PVAm-based FTMs, which may open doors to provide a facile and scalable approach to developing CO2-ultraselective membranes for carbon capture from flue gases.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?