American Chemical Society
Browse

Electronic Ligand Modifications on Cobalt Complexes and Their Application toward the Semi-Hydrogenation of Alkynes and Para-Hydrogenation of Alkenes

Posted on 2019-08-05 - 16:08
The effect of the electronic modification of a bis­(carbene) pincer ligand, (MesCCCR), on cobalt catalysis has been investigated. The pincer ligand was modified in the para position of the aryl backbone with a tert-butyl and trifluoromethyl moiety to yield the electronic variants that were applied toward the synthesis and characterization of several cobalt complexes, (MesCCCR)­Co. The application of the (MesCCCR)­CoI(N2)­PPh3 complexes toward the semihydrogenation of alkynes revealed that while the tert-butyl group does not impact reactivity, the loss of electron density at the metal center, by the installation of the CF3 group, does affect product ratios. Further inspection of the proposed mechanism suggested that the installation of the trifluoromethyl group slows down olefin hydrogenation. This finding was further supported in the application of the (MesCCCR)­CoI-py (py = pyridine) complexes toward the parahydrogenation of ethyl acrylate, which demonstrated that the electron-withdrawing ligand variant produced less polarization.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?