American Chemical Society
Browse

Efficient Photoelectrochemical Hydrogen Evolution Using Pseudocapacitive NiOx/Si Junction with Misaligned Energy Levels

Version 2 2019-01-11, 19:51
Version 1 2019-01-11, 19:48
Posted on 2019-01-11 - 19:51
Photoelectrochemical (PEC) water splitting performed by an electrocatalyst integrated with a semiconducting photoelectrode is advantageous with improvements in both charge-transfer kinetics and interface energetics because of the electrocatalyst/semiconductor junction. In general, interface energetics has been considered to arise from differences in the intrinsic electronic energy levels between the electrocatalyst and the semiconductor. Here, we demonstrated that when a NiOx thin film with porous and nanocrystalline structures is integrated with a Si photoelectrode, the interface energetics is developed by an electrochemical energy level extrinsically formed by the pseudocapacitive surface reaction (a redox reaction of NiOx for electrochemical charge storage). This new type of junction, named a pseudocapacitive NiOx/Si junction, revealed two intriguing features: the interface energetics is dynamically changed as charging/discharging progresses, and the developed electrochemical energy level and the electronic energy level of Si are abnormally misaligned under equivalent circuit conditions. With these features, the open circuit potential (Voc) of the PEC device was determined by the degree of misalignment (i.e., the electrochemical energy level). The electrochemical energy level was maximized by ∼1 V through the insertion of a SiO2 interfacial layer thick enough to suppress discharge and 1 h of PEC operation for sufficient charging by the transfer of light-induced electrons. As a result, the highest Voc of ∼1 V, surpassing the theoretical limit of 0.85 V in Si photovoltaics, was achieved. This finding demonstrated a new paradigm for self-powered PEC reactions.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?