American Chemical Society
Browse

Effect of Graphene Oxide on Phase Change Materials Based on Disodium Hydrogen Phosphate Dodecahydrate for Thermal Storage

Posted on 2020-06-17 - 14:33
A novel composite phase change material (PCM) for thermal energy storage was prepared by adding graphene oxide (GO) to melted disodium hydrogen phosphate dodecahydrate (DHPD, Na2HPO4·12H2O), which was then impregnated into expanded vermiculite (EV). Because of the addition of GO, the contact angle between melted DHPD and EV was decreased from 56 to 45°. The maximum latent heat of the composite PCM without GO was 167 J/g, which was improved to 229 J/g by adding 0.2 wt % GO. The phase change temperature of the composite PCM was around 42 °C. The results from X-ray diffraction, scanning electron microscopy, and contact angle tests revealed that the improvement in thermal energy storage was achieved because of the reduction of crystal water loss and the increased encapsulation amount of salt hydrates. Thus, the thermal stability of the composite PCM was improved by the addition of GO, which was demonstrated by thermogravimetric analysis. The results of all analyses indicate that the addition of a low weight fraction GO can promote the performance of salt hydrates existing in EV.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?