American Chemical Society
Browse

Direct Characterization of Native Chemical Ligation of Peptides on Silicon Nanowires

Posted on 2012-09-18 - 00:00
We describe the site-specific and chemoselective immobilization of peptides on hydrogen-terminated silicon nanowires (SiNWs) using native chemical ligation (NCL) (i.e., the reaction of a thioester group with a cysteine moiety to give a stable amide bond). The SiNWs investigated in this work were grown via a vapor–liquid–solid mechanism and functionalized with a thioester moiety. The immobilization of the peptides on the SiNWs was demonstrated by synthesizing peptides with an N-terminal cysteine residue and labeled with tetramethylrhodamine or trifluoromethyl groups that were detected by fluorescence and X-ray photoelectron spectroscopy, respectively. The peptides labeled with tetramethylrhodamine or trifluoromethyl groups for fluorescence or X-ray photoelectron spectroscopy (XPS) detection studies were synthesized with an N-terminal cysteine residue. N-Terminal seryl peptides and carboxy-terminated SiNWs were used as controls to demonstrate the chemoselectivity of the peptide immobilization.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?