American Chemical Society
Browse

Designing Kagome Lattice from Potassium Atoms on Phosphorus–Gold Surface Alloy

Posted on 2020-06-25 - 19:46
Materials with flat bands are considered as ideal platforms to explore strongly correlated physics such as the fractional quantum hall effect, high-temperature superconductivity, and more. In theory, a Kagome lattice with only nearest-neighbor hopping can give rise to a flat band. However, the successful fabrication of Kagome lattices is still very limited. Here, we provide a new design principle to construct the Kagome lattice by trapping atoms into Kagome arrays of potential valleys, which can be realized on a potassium-decorated phosphorus–gold surface alloy. Theoretical calculations show that the flat band is less correlated with the neighboring trivial electronic bands, which can be further isolated and dominate around the Fermi energy with increased Kagome lattice parameters of potassium atoms. Our results provide a new strategy for constructing Kagome lattices, which serve as an ideal platform to study topological and more general flat band phenomena.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?