American Chemical Society
Browse

Dehydrogenation vs Oxygenation in Photosensitized Oxidation of 9-Substituted 10-Methyl-9,10-dihydroacridine in the Presence of Scandium Ion

Posted on 2002-01-29 - 00:00
Photooxidation of 9-substituted 10-methyl-9,10-dihydroacridine (AcrHR) with oxygen occurs efficiently in the presence of 9,10-dicyanoanthracene (DCA) and scandium triflate [Sc(OTf)3] under visible light irradiation in oxygen-saturated acetonitrile (MeCN) to yield the 9-substituted 10-methylacridinium ion (AcrR+) and H2O2 or the 10-methylacridinium ion (AcrH+) and the oxygenated products of R such as ROOH, depending on the type of substitutent R. No DCA-photosensitized oxidation of AcrHR occurs in the absence of Sc3+ under otherwise the same experimental conditions. The observed selectivities for the C(9)−H vs C(9)−C bond cleavage of AcrHR in the DCA-photosensitized oxidation of AcrHR in the presence of Sc(OTf)3 agree with those for the cleavage of radical cations of AcrHR (AcrHR•+) depending on the type of substituent R. Such product selectivities, being consistent with the electron-transfer oxidation of AcrHR, combined with quantum yield determination, the 1O2 phosphorescence decay dynamics, and the detection of radical ion intermediates in the laser-flash photolysis experiments reveal the electron-transfer radical chain mechanism for the DCA-photosensitized oxidation of AcrHR initiated by photoinduced electron transfer from AcrHR to the singlet excited state of DCA.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?