American Chemical Society
Browse

De Novo Prediction of Binders and Nonbinders for T4 Lysozyme by gREST Simulations

Posted on 2019-08-21 - 15:17
Molecular recognition underpins all specific protein–ligand interactions and is essential for biomolecular functions. The prediction of canonical binding poses and distinguishing binders from nonbinders are much sought after goals. Here, we apply the generalized replica exchange with solute tempering method, gREST, combined with a flat-bottom potential to evaluate binder and nonbinder interactions with a T4 lysozyme Leu99Ala mutant. The buried hydrophobic cavity and possibility of coupled conformational changes in this protein make binding predictions difficult. The present gREST simulations, enabling enhanced flexibilities of the ligand and protein residues near the binding site, sample bindings in multiple poses, and correct portrayal of X-ray structures. The free-energy profiles of binders (benzene, ethylbenzene, and n-hexylbenzene) are distinct from those of nonbinders (phenol and benzaldehyde). Bindings of the two larger molecules seem to be associated with a structural change toward an excited conformation of the protein, which agrees with experimental findings. The protocol is generally applicable to various proteins having buried cavities with limited access for ligands with different shapes, sizes, and chemical properties.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?