American Chemical Society
Browse

Conformationally Constrained Analogues of Diacylglycerol (DAG). 25. Exploration of the sn-1 and sn-2 Carbonyl Functionality Reveals the Essential Role of the sn-1 Carbonyl at the Lipid Interface in the Binding of DAG-Lactones to Protein Kinase C

Posted on 2005-09-08 - 00:00
Diacylglycerol (DAG) lactones with altered functionality (CO → CH2 or CO → CS) at the sn-1 and sn-2 carbonyl pharmacophores were synthesized and used as probes to dissect the individual role of each carbonyl in the binding to protein kinase C (PKC). The results suggest that the hydrated sn-1 carbonyl is engaged in very strong hydrogen-bonding interactions with the charged lipid headgroups and organized water molecules at the lipid interface. Conversely, the sn-2 carbonyl has a more modest contribution to the binding process as a result of its involvement with the receptor (C1 domain) via conventional hydrogen bonding to the protein. The parent DAG-lactones, E-6 and Z-7, were designed to bind exclusively in the sn-2 binding mode to ensure the correct orientation and disposition of pharmacophores at the binding site.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?