American Chemical Society
Browse

Can 2‑X-Ethanols Form Intramolecular Hydrogen Bonds?

Version 2 2019-08-23, 14:39
Version 1 2019-08-23, 14:36
Posted on 2019-08-23 - 14:39
For 2-X-ethanols, where X = F, OH, or NH2, the gauche conformer is favored over the trans conformer by at least 2 kcal/mol. Initially, this preference, ΔE, was attributed to an intramolecular hydrogen bond, IMHB, between the OH and X groups. Over the years, this conclusion has been challenged by two major arguments. One claim is that the entirety of ΔE can be accounted for by the gauche effect. Against this, calculations using five different methods show that the maximum contribution of the gauche effect to ΔE is less than 1 kcal/mol. A second argument employs the quantum theory of atoms in molecules to contend that the absence of a bond critical point (BCP) between the OH and X groups in 2-X-ethanols denotes the lack of an IMHB. By looking at the 2-X-ethanols at fixed XCCO torsional angles ranging from 0° to 60°, it is shown that the BCP criterion is inconsistent with other properties such as energy, bond lengths, and stretching frequencies. These inconsistencies are removed when the theory of noncovalent interactions is used. The IMHBs in 2-X-ethanols are found to be similar in form but smaller in magnitude than their intermolecular counterparts. This work concludes that 2-X-ethanols form IMHBs.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?