American Chemical Society
Browse

Biotechnological Development of a Practical Synthesis of Ethyl (S)-2-Ethoxy-3-(p-methoxyphenyl)propanoate (EEHP): Over 100-Fold Productivity Increase from Yeast Whole Cells to Recombinant Isolated Enzymes

Posted on 2012-02-17 - 00:00
The coupling of the enantioselective reduction catalyzed by Old Yellow Enzymes (OYEs), together with the in situ substrate feeding product removal (SFPR) concept, significantly improved the productivity of the g-scale preparation of ethyl (S)-2-ethoxy-3-(p-methoxyphenyl)propanoate (EEHP), an important precursor of several PPAR-α/γ agonists, such as Tesaglitazar. The OYEs and the glucose dehydrogenase for cofactor regeneration were cloned, overexpressed in Escherichia coli, and purified. The synthetic sequence was completed by a NaClO2 oxidation employing cheap and environmentally friendly conditions. The product was obtained in 94% yield and with an ee of 98% over the two steps.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?